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sets in.

This talk deals with mathematical questions for Bose gases

below the temperature Tgec where Bose-Einstein condensation
The model considered is of two-component type, consisting of :

- a kinetic equation for the distribution function of a gas of
(quasi-)particles interacting with a Bose condensate,

- a Gross-Pitaevskii equation describing the condensate.

< 0O <P 2> < F



scattering length, and

Denote by n. the non-equilibrium

density of the atoms in the condensate, m the atomic mass, ga

4
Ep — \/p_ 1. ==
the excitation energy.

condensate iS in an isotropic setting

£he kinetic equation for the distribution

function of a gas of (quasi-)particles interacting with a Bose
The collision term is

O

of = C(f, ne).
C(f, ne)(P) = i [ Bé(py ~ p2 — pa)(E: — Ez — Ex)lé(p— 1)

—0(p —p2) —o(p— p3)l((1 + fi)fofs — F1(1 + 2)(1 + £3))dp1dp2aps.



Let pp = /2mgn. be a characteristic momentum.

The kernel B is bounded by a multiple of

5= (1 1) (1 1) (12 ),

In the physically interesting cases when asymptotically
- either all |pi| << po,
-or all |pj| >> po,
- or one |pj| << pg and the others >> py.

The three cases are relevant for low (resp. intermediate
temperatures compared to Tggc, resp. collisions of low

temperature phonons with high temperature excitations).



The Bose condensate density hc(é) satisfies

n, (£) :-Jm,nc)d,t.



The main result.

Theorem

Let ng > 0 and fi(p) = fi(|p|) € L. be given with
f.(p)|p|>*Y € L' for some v > 0.

There exists a nonnegative solution

(f, ne) € C'([0,00); L1 ) x C'(]0, 0))

to the initial value problem.

The condensate density n. is locally bounded away from zero
fort > 0.

The excitation density f conserves momentum and has energy
locally bounded in time.

Total mass My = ng; + | fi(p)dp is conserved, and the moment
[ |pI2*7fdp is locally bounded in time.



In the low temperature case, if the mathematical condition
corresponding to the physics requirement |p| << pg is taken as
|p| < pg := ), the proof of the main theorem simplifies. It holds
that

Theorem
Let ng; > 0 and fi(p) = fi(|p|) € L} be given.
There exists a nonnegative solution

(f, ng) € C'([0,00); L1) x C'([0, 0))

to the initial value problem.

The condensate density n. is locally bounded away from zero
fort > 0.

The excitation density f conserves momentum and has energy
bounded globally in time.

Total mass My = ng; + | fi(p)dp is conserved.



In the intermediate temperature case, without the cut-off
function x in the collision operator, mention the existence result
[N 2005, 'Bose-Einstein condensates at very low
temperatures...] considering the excitation density f in measure
sense.

With the cut-off function y included, existence also holds in the
present L'-setting.



Theorem

Let ng; > 0 and fi(p) = fi(|p|) € L1 with fi(p)|p|**t" € L' for
some v > 0.

There exists a nonnegative solution
(f,ne) € C'([0,00); L}) x C'([0, 0))

to the initial value problem.

The condensate density n. is locally bounded away from zero
fort > 0.

The excitation density f conserves momentum.
Total mass is conserved, as well as the energy type integral

2 1 1
/g_mn(p)dmEgncf/ﬂ(p)dergMo(/ fi(p)dp + 7 ne)-

The moment [ |p|**" fdp is locally bounded in time.
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Proof of the main theorem.

The collision operator is

C(f, nc)(p) = ”c/55(P1 — P2 — P3)d(E1 — Bz — E3)[0(p — p1)
—0(p — p2) = o(p — p3)l((1 + fi)fafzs — F(1 + f2)(1 + f3))dpy dp2dps.
First,

/ 2(p)C(f, ) (p)dlp

— e [ B(p(pr) — o(P2) — #(ps))6(p1 — P2 — o)
0(E1 — Eo — E3)(hfzs — f1(1 + & + f))dpr dp2dps.

Hence nc(t) + [ f(t, |p|)dp = My, i.e. total mass is conserved.



The energy (resp. the condensate density) is bounded from
above (resp. from below) locally in time as follows.

Lemma
Let the initial data (f;, n¢;) satisfy

0 <ne <M, nei+ / fi(lpl)dp = Mo.

Then there is Ty > 0 such that

%5 < (), /E(p, ne)f(t,p)dp < k, te [0, Tol,

for any nonnegative solution (f, n;) to the system.



Proof of the lemma.

For any nonnegative solution (7, nc) to the system,

Ng o1 2| P3|
[ < _
o)< [P AR A2 P2 — o)
0(E1 — B> — E3)(fofs + f1(2f> + 1)) dp1 dp2aps
— X1 -+ Xg -+ X3.

Using spherical coordinates for p, and ps, with axis directed by
p> and azimuthal angle 3 for ps, setting |p| = r, and
performing the change of variables ¢3 — s = cosy3,

\/_

where

){(t,r3) Y1drsary,

r3

|
Y, — ] 5(F1(s))ds,

—1



S =

F¢ vanishes for a single value s of s. Then,

Fi(s) := \/(rz2 + 15 4 212r38)? + Ne(rs + 15 + 2r2r38) — Sy,

4 2 4 2
Hence,

I’2I’3.
= I
Xi SZK/ ra(
0

5 € I3
N 1)E(t, fz)/ 13(
0

NG

NG

A 1)f(t, I’3)df3dl’2
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Similarly,

X < i—k(/f(t,p)dp)2.

c

Finally,
Xa < ky/me [ f(t.p)dp
+ K /pzf(t p)dp < Mok+/ne + a /PZf(f p)dp
2\/Me ST T 2/, o
And so,

3
(1)) < k(40 + Mon + Vs | pPH(t, p)ab).



Denote by G(t, n)

= | E(p, n)f(t,p)dp. Then
0G Id Mo
— = f(t,p)dp € [0,
o5 / > ,——( ,P)dp € |
Hence,
Moreover
d

G(t, nc(t)) < G(t, ng) + Mj
at

G(t, Ng :/\p\\/p2+nC,C(f ne)(t, p)dp
= nC /

/ |A\2(Ip1 !(\//O% + Noj — \/p1 + No

(1)
P2l(y/ R + Ny — /P2 + (1))
~1ps|(y/ 8 + nei — /B3 + (1))
3(p1 — P2 — Pa)o(Ipr |/ % + o) — Paly/ P + ne(t)
:

(t
~1Psl\/ 8 + no(t))(fafs — fi (1 + fy + f5)cloy dpadips

.



It follows from

IpH\/p2 + Nej — \//o2 + ne(t) [<] nei — ne(t) |[< My, pe R,

and similar computations as in the previous control of X, X5
and Xz, that

2
GGt ne)l < 2KMon(6) (575 + 2o /mlt) + = [ P plob)
2
< ZkMOnC(t)(:Z\(ﬂt) + 2Mo ( ) = G%CI))
And so,

3
G(t, ne(t)) < Mg + G(0, ny) exp (2ME )
5 3
+k(8MF + 2Mg + 2MZ ) (exp (2M2 t) — 1).

The lemma follows.
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If the solution exists on [0, TT, then it follows from a refinement
of the previous proof that infyy 7 nc(f) > 0. Indeed, one proves
that for some k > 0,

3
lt) 2 k= 2Mon Vs [ PPA(tp)d. te[0,T]

with the integral [ p?f(t, p)dp bounded.



Lemma
For any nonnegative (f, n),

[ ct.nyp)apl < k( [ o))" + kv [ Pt

Lemma

Given 0 < n, < My, there is a constant k such that for any
n € [n., Mg] and isotropic functions (f,g) € L1 (R3) x L1 (R3)
with L' norm bounded by Mj,

[ 1(ctt.n) ~ Clg.m)P)lap < k [ (1+VAR)I(F - 9)(p)ld.



Lemma
For any v € [0,1],

/ PP 1(t, p)dp < f PI2+27f(p)dp + Mot sup( / (1 + p?)f(s, p)dp)

Proof.

Multiply the equation satisfied by f by |p|>t27 and integrate it on
(0, 1) x R3, so that

t
[ o2t pap+ [ nls) [ B(lpy22
0
—|P2[#2Y — |32 i 6(p1 = P2 + p3)3(Er = Ez + E3)dpi2ads

t
= [ 1PE® P+ [ ne(s) [ Bllpr[*+2" — lpaf?® — paff2)

(s — fi(fa + ))d(p1 = P2 + p3)d(E1 = Eo + Ez)dpi23ds.
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It is sufficient to prove that there is a positive constant K such
that

0 < ri ™ — ™ — 2 < K(1 + )(1+13), (2)

when Ey = E> + E3. Indeed, the second term in the left member
of the previous slide will then be nonnegative, whereas the
second term in the right member will be bounded from above by
Motsups(f (1 + p*)f(s, p)dp)?. Since

n?+4E? —n
7= >— 1<i<3,

(2) holds if there is a positive constant K such that

0= ( n2+4(52+53)2—n)1+7— ( n2+4E22—n)1+fy

._< n2_|_4E§— n)wﬂ

< K(y/P+4B2 —n+2) (/2 +4E2 - n+2), (B Es) € (Ry)2



Construction of solutions on a small interval of time

For any initial data f; and n,; > 0, there is a positive time Ty and

n, > 0 such that any solution (f, nc) of the initial value problem
IS such that

nc(t) >Ny, T€E [07 TO]'
Let

K= {ne C([0, Tol): n(0) = ey, 5 < n(t) <My, teo,Tol}.

A local in time solution to the problem is found as a fixed point
of the following map.



Let a (large) truncation value P be defined for the linear part of
the collision operator. Let ® be the map defined on K by
®(n) = m, where

m(t) =My~ [ f(t.p)dp, te0,Tol

and f is the mild solution in C([0, 7p]; L) for some 7 defined
below with 0 < 0 < To, to

of
¢ =C (f.n),  1(0,p) = fi(p), (5)
with
C"(f,n) = ”/ Bo(p1 — p2 — p3)d(E1 — E2 — E3)[6(p — p1)
=6(p — p2) — 0(p — p3)|(fofs — f1(f2 + 1)) dp1 dp2dps
—”/X|p|<PB5(P1 — P2 — P3)o(Ey — E2 — E3)
(6(p = p1) — (P — p2) — 6(p — p3))fidp1dp2dps.
Here x5 <p is the characteristic function of the set where



Writing the equation satisfied by f in exponential form and
estimating the solution from below by the term containing the
initial value, it follows that the bound of n from below, n., can be
taken independent of P.

Given n, a mild solution f for (5) can be constructed as the limit
of the nonnegative sequence (), defined by f, = f; and

df 1
ot

+ fi1 CF (£,n) = CH (£, n),
fi41(0,p) = (p).
The collision frequency is
Cl(f,n) = n[2 / Bo(p — po — p3)d(Ep — E2 — E3)hdpodps
+2/B5(p1 — P2 — P)d(Ey — Ex — Ep)frdpidpo

‘|'/X|p|<PB5(p — P2 — P3)0(Ep — E2 — Ez)dp2dps],

which preserves positivity together with the gain term
Cy (f,n) = CP(f,n)+ fCF(f,n).

«+ O = Fr 2 F v o2 FoL
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For any nonnegative functions f,g € L' and any n € [0, My, it
holds that

] (CP(f.n) — CP(g, n)(p)|db < kn(P? + / f(p)dp + / 9(p)co)
/ (- g)(p)|dp. (6

For 79 > 0 smaller than ff_(p)nger, where c is a suitable
/

constant, the sequence (f;) is uniformly bounded by 2 | fi(p)dp
and converges in C([0, 7o]; L") to a mild solution of (5) (using
(6) and induction), since

Sup \(fj—l-'l - f})(tv ')|L1 < kTp SuUp ‘(fj - fj—1)(t7 ')lU? ./ e N.
te[0,7] te[0,7o]

The nonnegative solution f is unique in C([0, 7o); L") by the
L'-Lipschitz property of CP(-,n). The time-interval [0, 7] can be
so chosen that m(t) = ®(n)(t) > %n, uniformly for n € K and

0 _<_ t S T0-

Oy AP o« Er 0 E =



The map ¢ is continuous. Indeed, let (n,7) € K x K and
m = &(n) resp. M = ®(). Then for { < 7o,

Consequently, for 7 small

i} t )
/ (f—H(Lp)do < kt || n— o | + K /O [ 177 piopes

sup

/ (f— Pt p)ldp < k7 || = o
te[0,7]

(7)
and so

| m— < kT [l n— Nl
The continuity of ® on [0, 7]

follows. Moreover, the map @ is
compact by Arzela-Ascoli. Indeed ¢(K) is bounded on
since $n. < ®(n)(t) < Mo for t € [0,70], N € K.

[0,7'0],

4 0 F %W ox 8
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Besides the map ¢ is equicontinuous, since

D(n)(t) tzl—\f (t, p)dp — /ftz, \dp)

<|th — k| sup [ |C(f,n)(¢ p)ldp

te[0,79]
sup f(t,p)dp(P* + sup [ f(t, p)dp))lh — b
te[0,79] te[0,7]

< k(2/ﬁ(p)dp(P2+2/ﬁ(p)dp))\t1 —b|, nekK



Consequently, there is a pair of nonnegative functions

(f", ng) € C([0,70], L") x C([0, o)),

satisfying
ofP anf;
or =Cn), = [bi @

f(0,p) = fi(p), ne(0) = ng,

in mild form with a truncation for | p |> P in the linear part of the
collision operator.

Since [ CFP(fF, nf)dp is continuous in t, the solution nf is
continuously differentiable in t and satisfies (8) in strong form.



Lemma
The family (CP(fF, nP)(t)), t € [0, Ty], with values in L', is
t-continuous in the L'-norm, uniformly with respect to P and t.

The conservation of total mass follows from the fixed point
property.

The boundedness of the energy of f* is similar to the previous
formal proof.

The integrals [(1 + p?)fPdp are also uniformly in P bounded.
Observing that n, is so chosen that for any P, nZ > n, on any
subinterval [0, T{] of [0, To] where nf exists, the result can for
each P be extended by iteration to the whole interval of time
[07 TO]
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The f"’s are also the limits in C([0, To]; L!
J

sequences (fF), defined by £ = 0 and
P
o

ot

1+p 2)
TP
—I—)}

of increasing

| Bxii<p3(p — P2 — Po)3(Ep — E2 — Ex)dpadps

+C(17, ) ) = Co(HF, nf)
+2n [ Bxpi<pd(p1 — p2 — P)I(E — E2 — Ep)fFdpydpe
Here C; is defined by

j—|—1 (0,p) = fi(P)X|p1<P

Ci(f,n 2”[/55 p — P2 — p3)d(Ep — E2 — E3)fdp2dps
_I_

[ B3(pr — P2 — PYA(E: — E2 — Ep)fodprdpa



and
Cy(f, n) = ”[/ Bé(p — p2 — p3)d(Ep — Ex — E3)fafadpaaps
+2 / Bé(p1 — p2 — p)o(E1 — E2 — Ep)fifadpy dpso

+2f [ B(ps — pz — P)I(E: — E2 — Ey)frpi ol

It will be used in the study of limp_,.f* below, that such s

share with the f*’s any uniform bound for (2 + «v)-moments.
One proves by induction that ("), j € N, is an increasing
seguence of nonnegative functions bounded by f*.



It remains to prove that a subsequence of (f*, n) converges in
C([0, Tol, L]+p2) x C([0, To]), and that its limit is solution to the
problem.

Using Arzela-Ascoli, the sequence (n”) is compact in
C([0, To)).

Lemma

Givent € [0, Ty], the family

(97(1)) == (J Bxjpj<pd(P1 — P2 — P)3(Ey — Ex — Ep)fF(t)dpy dpo)
is compact in L'. This also holds for the family (C(fP, nE)(t)).

Proof.
First,

+00 rq
/ gP(p)dp < k/ I fP(r1)/ r3dradry
Ip|>K K K

+0o0
<k [ Bf(dn < [ PRy,
K

which uniformly in P and t tends to zero when K — 4.
<Oy «F ey o« F o o4 B
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One then proves that for fixed K > 0,

tm [1°(p -+ M) < — 6 (PIxpickldp =0,

uniformly with respect to P and t.

For the family C,(f”, nf) it is enough to consider a sequence
(P;) tending to infinity, for which (nCP’) is uniformly in t
convergent. From there the proof is similar to the previous case.



We can now take a subsequence (g”, f)/(fP/, nCP’), nCP’) with P,
tending to infinity, converging for rational t to a limit (g, h, n¢),
and will for such t prove that () is a Cauchy sequence in L'.
The Cauchy property for irrational t then follows from a former
lemma.
To prove that (f7) is a Cauchy sequence in L', split f7 — fPr
into
, ,. . Py Py Py Py ..

for — fPr = (P L) A (E = FT) + (F 7).
It is enough to prove the convergence on compact p-sets. From
the cancelation of the inhomogeneous term in the right hand

side of the equation satisfied by 7 — 7", it holds that
l f,DI, - “)E-P// _
j—:—Too( J ) O’
uniformly with respect to I’ and t. One then proves by finite
induction that for J given,

. ~P =
im (" =Ff")=0
' —+o00,I" —+o00

in L1-sense. .



Also f = limfF ¢ L', and

of
5 T f(ne / Bxo(p— p2 — p3)d(Ep — E> — E3)dpaaps + h)

= Cy(f, nc) +2ncg, £(0,p) = f(p).

But the L'-convergence of (") implies that

g= lim g7 = lim /BXX|p|<P5(P1 — p2 — P)3(Ey — Ex — Ep)f{ dpyo

=00 =00

— /BX5(P1 — P2 — p)o(Ey — Ex — Ep)fidp2,
h= lim C(f7,n2) = Ci(f, ny).

[—o0
And so (f, n;) satisfies the system of equations on [0, Tg] in
mild form with the |p|>*7-moment of f bounded in L'.
This can be continued up to any time T, since
infsero, 71 Nc(t) > O for any time interval [0, T where (f, n¢)
exists. The C'-properties of f, n. with respect to time, follow as
above for ¥, nf.



